Перевод: с русского на все языки

со всех языков на русский

быть источником

  • 1 быть источником

    1) General subject: give, give rise
    2) Makarov: give rise (to)

    Универсальный русско-английский словарь > быть источником

  • 2 быть источником

    v
    gener. (чего-л.) générer (L'embout ne peut se déplacer dans le corps de bielle et ainsi ne peut générer un phénomène de fatigue sur ce corps.)

    Dictionnaire russe-français universel > быть источником

  • 3 быть источником печали, показывать очень грустную ситуацию

    Idiomatic expression: tear jerker

    Универсальный русско-английский словарь > быть источником печали, показывать очень грустную ситуацию

  • 4 быть источником инвалютных поступлений

    Diccionario universal ruso-español > быть источником инвалютных поступлений

  • 5 быть источником дохода

    v

    Universale dizionario russo-italiano > быть источником дохода

  • 6 быть для (кого-л.) источником вдохновения

    General subject: be a fount of inspiration to, to be a fount of inspiration to (smb.)

    Универсальный русско-английский словарь > быть для (кого-л.) источником вдохновения

  • 7 быть подлинной источником

    General subject: be at the bottom of (чего-л.)

    Универсальный русско-английский словарь > быть подлинной источником

  • 8 быть подлинной причиной или источником

    Makarov: be at the bottom of (smth.) (чего-л.)

    Универсальный русско-английский словарь > быть подлинной причиной или источником

  • 9 быть для источником вдохновения

    General subject: (кого-л.) be a fount of inspiration to, (кого-л.) to be a fount of inspiration to (smb.)

    Универсальный русско-английский словарь > быть для источником вдохновения

  • 10 быть возможным источником

    v
    gener. (чего-л. нежелательного) être incriminé

    Dictionnaire russe-français universel > быть возможным источником

  • 11 может быть

    [sent adv (parenth)]
    =====
    1. Also: МОЖЕТ СТАТЬСЯ obs [fixed WO]
    possibly:
    - (he < sheetc>) may (might) (perhaps);
    - (he <she etc>) might just.
         ♦ Утешение же, а может быть, это и не утешением было, а чем-то другим - каким-то источником новых сил, - она стала находить в квартире Нюрка... (Залыгин 1). She began to find some comfort in Niurok's little flat...or perhaps it wasn't comfort at all, but something else, a kind of source of new strength (1a).
         ♦ В течение года, может быть двух, происходили столкновения, ссоры, драки, случилось даже убийство... (Федин 1). In the course of a year, maybe two, there occurred clashes, quarrels, fights, and even murder took place... (1a).
         Те [очевидцы], что остались, рассказывают по-разному, а некоторые и вовсе не помнят... Что касается меня, то я собрал в кучу всё, что слышал по данному поводу, и прибавил кое-что от себя, прибавил, может быть, даже больше, чем слышал (Войнович 2). Those [eyewitnesses] that are [left] tell all kinds of different stories and some can't remember anything at all....As for me, I've heaped up everything I heard on the subject and added a little something of my own as well, could be I even added more than I heard (2a).
         ♦ "За тобой я, может быть, пойду, а один не сдвинусь с места" (Гончаров 1). "I may, perhaps, follow you, but alone I shall not stir from this spot" (1b).
         ♦ В другое время и при других обстоятельствах подобные слухи, может быть, не обратили бы на себя никакого внимания... (Гоголь 3). At another time and under different circumstances such rumors might not have attracted attention (3c). At another time, under different circumstances, it is possible that these rumors wouldn't have had such an impact (3e).
         ♦ "Так если бы вы... Лягавому предложили вот то самое, что мне говорили, то он, может статься..." - "Гениальная мысль!" - восторженно перебил Митя (Достоевский 1). "So if you were to...make Lyagavy the same offer you made me, he might just..." "A brilliant idea!" Mitya interrupted ecstatically (1a).
    2. used in sentences expressing urging, prompting etc (occas. in order to soften the categorical nature of the prompting):
    - why not (do sth.);
    - why don't you (we etc) (do sth.).
         ♦ Лёнька спросил: "Может быть, немного посидим?" - "Это ночью", - ответил Садчиков. "Ноги отваливаются" (Семёнов 1). Lyonka said: "Perhaps we can sit down for a while?" "Tonight," replied Sadchikov. "My legs are dropping off" (1a).

    Большой русско-английский фразеологический словарь > может быть

  • 12 пылезащитная оболочка

    1. dust-protected enclosure
    2. dust containment

    3.9 пылезащитная оболочка (dust containment): Части технологического оборудования, предназначенные, например, для предотвращения утечки пыли в окружающую среду, внутри которых осуществляют обработку, транспортировку или хранение материалов.

    Источник: ГОСТ Р МЭК 61241-10-2007: Электрооборудование, применяемое в зонах, опасных по воспламенению горючей пыли. Часть 10. Классификация зон, где присутствует или может присутствовать горючая пыль оригинал документа

    3.11 пылезащитная оболочка (dust-protected enclosure): Оболочка, доступ пыли в которую закрыт не полностью, но пыль поступает в количествах, недостаточных для нарушения безопасного режима работы оборудования.

    Примечание - Пыль не должна накапливаться внутри оболочки, где она может стать (быть) источником воспламенения.

    Источник: ГОСТ Р МЭК 61241-0-2007: Электрооборудование, применяемое в зонах, опасных по воспламенению горючей пыли. Часть 0. Общие требования оригинал документа

    3.7 пылезащитная оболочка (dust-protected enclosure): Оболочка, доступ пыли в которую закрыт не полностью, но пыль поступает в количествах, недостаточных для нарушения безопасного режима работы оборудования.

    Примечание - Пыль не должна накапливаться внутри оболочки, где она может стать (быть) источником воспламенения.

    Источник: ГОСТ Р МЭК 61241-14-2008: Электрооборудование, применяемое в зонах, опасных по воспламенению горючей пыли. Часть 14. Выбор и установка оригинал документа

    3.12 пылезащитная оболочка (dust containment): Части технологического оборудования, предназначенные для предотвращения утечки пыли в окружающую среду при обработке, транспортировке или хранении материалов.

    Источник: ГОСТ Р МЭК 60079-10-2-2010: Взрывоопасные среды. Часть 10-2. Классификация зон. Взрывоопасные пылевые среды оригинал документа

    3.9 пылезащитная оболочка (dust containment): Части технологического оборудования, предназначенные, например, для предотвращения утечки пыли в окружающую среду, внутри которых осуществляют обработку, транспортировку или хранение материалов.

    Источник: ГОСТ Р МЭК 61241.10-2007: Электрооборудование, применяемое в зонах, опасных по воспламенению горючей пыли. Часть 10. Классификация зон, где присутствует или может присутствовать горючая пыль оригинал документа

    3.9 пылезащитная оболочка (dust containment): Части технологического оборудования, предназначенные, например, для предотвращения утечки пыли в окружающую среду, внутри которых осуществляют обработку, транспортировку или хранение материалов.

    Источник: ГОСТ IEC 61241-10-2011: Электрооборудование, применяемое в зонах, опасных по воспламенению горючей пыли. Часть 10. Классификация зон, где присутствует или может присутствовать горючая пыль

    3.7 пылезащитная оболочка (dust-protected enclosure): Оболочка, доступ пыли в которую закрыт не полностью, но пыль поступает в количествах, недостаточных для нарушения безопасного режима работы оборудования.

    Примечание - Пыль не должна накапливаться внутри оболочки, где она может стать (быть) источником воспламенения.

    Источник: ГОСТ IEC 61241-14-2011: Электрооборудование, применяемое в зонах, опасных по воспламенению горючей пыли. Часть 14. Выбор и установка

    Русско-английский словарь нормативно-технической терминологии > пылезащитная оболочка

  • 13 эротогенные зоны

    = эрогенные зоны
    Основу всех терминов составляет греческое слово "эрос", означающее сексуальную любовь и греческого бога любви одновременно (Фрейд использовал слово "эрос" для обозначения влечения к жизни, а термин "либидо" — для обозначения его энергии). Эротизм является, по сути, эквивалентом сексуальности в самом широком смысле слова, то есть сексуальности, не ограниченной только генитальными функциями. Эротизм включает в себя способность (эротогенность) к особого рода удовольствию, ощущаемому при ожидании или при возбуждении частей тела (в частности, кожи и слизистых оболочек) во время действий, соответствующих специфическим воспоминаниям и фантазиям, связанным с паттернами возбуждения и реагирования этих частей. Фрейд постулировал эротогенность в качестве количественного фактора, способного усиливаться или ослабевать, а также перемещаться от одной части тела к другой.
    Ощущения, чувства, мысли или действия благодаря такой эротогенности, то есть благодаря их способности быть источником сексуального возбуждения, активируют сексуальную систему. Сексуальное возбуждение распространяется на другие биологические и психические системы и ведет к особому душевному состоянию, при котором восприятие себя и объекта, а также намерения физического контакта с другим индивидом приобретают чувственную окраску.
    Хотя самые разные восприятия, символы или фантазии могут быть эротогенными, биологически детерминированными компонентами сексуальной системы являются определенные анатомические области тела — эротогенные зоны. Стремление к сексуальному удовлетворению связано с этими частями тела; именно их стимуляция и вызывает сексуальное возбуждение. Они могут использоваться как для аутоэротического удовлетворения, так и для сексуального контакта с другими людьми. Психобиологические паттерны и функции этих зон могут оказывать влияние на развитие характера и на образование симптомов. Какая именно зона будет эротогенной и как она будет функционировать, обусловливается факторами развития и культуры. Любая часть тела (не только оральная, анальная и генитальная зоны) может катектироваться вторично и становиться эротогенной зоной. Обычно становятся эротогенными те части или области тела, которые обеспечивают удовлетворительный контакт с матерью благодаря вниманию, заботе и стимуляции с ее стороны. Этот контакт является также источником компонентных элементов (парциальных влечений), которые в дальнейшем определяют сексуальные цели и организуются — в большей или меньшей степени — под приматом генитальной зоны в пубертате.
    \
    Лит.: [251, 280, 300, 541, 822]

    Словарь психоаналитических терминов и понятий > эротогенные зоны

  • 14 источник

    Русско-английский словарь по общей лексике > источник

  • 15 диссертация на соискание учёной степени

    n
    patents. Inauguraldissertation (может быть источником, порочащим новизну изобретения)

    Универсальный русско-немецкий словарь > диссертация на соискание учёной степени

  • 16 эрогенная зона

    adj
    psychoan. erogene Zone (любая часть тела, которая может быть источником эротических ощущений)

    Универсальный русско-немецкий словарь > эрогенная зона

  • 17 порождать

    vt; св - породи́ть
    1) уст to beget, to give birth to
    2) быть источником to raise, to generate, to produce, to give rise to; to engender lit

    его́ до́лгое отсу́тствие породи́ло сомне́ния/стра́хи — his long absence gave rise to/generated/raised/produced doubts/fears

    наси́лие порожда́ет наси́лие — violence breeds/engenders violence

    Русско-английский учебный словарь > порождать

  • 18 трехфазный источник бесперебойного питания (ИБП)

    1. three-phase UPS

     

    трехфазный ИБП
    -
    [Интент]


    Глава 7. Трехфазные ИБП

    ... ИБП большой мощности (начиная примерно с 10 кВА) как правило предназначены для подключения к трехфазной электрической сети. Диапазон мощностей 8-25 кВА – переходный. Для такой мощности делают чисто однофазные ИБП, чисто трехфазные ИБП и ИБП с трехфазным входом и однофазным выходом. Все ИБП, начиная примерно с 30 кВА имеют трехфазный вход и трехфазный выход. Трехфазные ИБП имеют и другое преимущество перед однофазными ИБП. Они эффективно разгружают нейтральный провод от гармоник тока и способствуют более безопасной и надежной работе больших компьютерных систем. Эти вопросы рассмотрены в разделе "Особенности трехфазных источников бесперебойного питания" главы 8. Трехфазные ИБП строятся обычно по схеме с двойным преобразованием энергии. Поэтому в этой главе мы будем рассматривать только эту схему, несмотря на то, что имеются трехфазные ИБП, построенные по схеме, похожей на ИБП, взаимодействующий с сетью.

    Схема трехфазного ИБП с двойным преобразованием энергии приведена на рисунке 18.

    4929
    Рис.18. Трехфазный ИБП с двойным преобразованием энергии

    Как видно, этот ИБП не имеет почти никаких отличий на уровне блок-схемы, за исключением наличия трех фаз. Для того, чтобы увидеть отличия от однофазного ИБП с двойным преобразованием, нам придется (почти впервые в этой книге) несколько подробнее рассмотреть элементы ИБП. Мы будем проводить это рассмотрение, ориентируясь на традиционную технологию. В некоторых случаях будут отмечаться схемные особенности, позволяющие улучшить характеристики.

    Выпрямитель

    Слева на рис 18. – входная электрическая сеть. Она включает пять проводов: три фазных, нейтраль и землю. Между сетью и ИБП – предохранители (плавкие или автоматические). Они позволяют защитить сеть от аварии ИБП. Выпрямитель в этой схеме – регулируемый тиристорный. Управляющая им схема изменяет время (долю периода синусоиды), в течение которого тиристоры открыты, т.е. выпрямляют сетевое напряжение. Чем большая мощность нужна для работы ИБП, тем дольше открыты тиристоры. Если батарея ИБП заряжена, на выходе выпрямителя поддерживается стабилизированное напряжение постоянного тока, независимо от нвеличины напряжения в сети и мощности нагрузки. Если батарея требует зарядки, то выпрямитель регулирует напряжение так, чтобы в батарею тек ток заданной величины.

    Такой выпрямитель называется шести-импульсным, потому, что за полный цикл трехфазной электрической сети он выпрямляет 6 полупериодов сингусоиды (по два в каждой из фаз). Поэтому в цепи постоянного тока возникает 6 импульсов тока (и напряжения) за каждый цикл трехфазной сети. Кроме того, во входной электрической сети также возникают 6 импульсов тока, которые могут вызвать гармонические искажения сетевого напряжения. Конденсатор в цепи постоянного тока служит для уменьшения пульсаций напряжения на аккумуляторах. Это нужно для полной зарядки батареи без протекания через аккумуляторы вредных импульсных токов. Иногда к конденсатору добавляется еще и дроссель, образующий совместно с конденсатором L-C фильтр.

    Коммутационный дроссель ДР уменьшает импульсные токи, возникающие при открытии тиристоров и служит для уменьшения искажений, вносимых выпрямителем в электрическую сеть. Для еще большего снижения искажений, вносимых в сеть, особенно для ИБП большой мощности (более 80-150 кВА) часто применяют 12-импульсные выпрямители. Т.е. за каждый цикл трехфазной сети на входе и выходе выпрямителя возникают 12 импульсов тока. За счет удвоения числа импульсов тока, удается примерно вдвое уменьшить их амплитуду. Это полезно и для аккумуляторов и для электрической сети.

    Двенадцати-импульсный выпрямитель фактически состоит из двух 6-импульсных выпрямителей. На вход второго выпрямителя (он изображен ниже на рис. 18) подается трехфазное напряжение, прошедшее через трансформатор, сдвигающий фазу на 30 градусов.

    В настоящее время применяются также и другие схемы выпрямителей трехфазных ИБП. Например схема с пассивным (диодным) выпрямителем и преобразователем напряжения постоянного тока, применение которого позволяет приблизить потребляемый ток к синусоидальному.

    Наиболее современным считается транзисторный выпрямитель, регулируемый высокочастотной схемой широтно-импульсной модуляции (ШИМ). Применение такого выпрямителя позволяет сделать ток потребления ИБП синусоидальным и совершенно отказаться от 12-импульсных выпрямителей с трансформатором.

    Батарея

    Для формирования батареи трехфазных ИБП (как и в однофазных ИБП) применяются герметичные свинцовые аккумуляторы. Обычно это самые распространенные модели аккумуляторов с расчетным сроком службы 5 лет. Иногда используются и более дорогие аккумуляторы с большими сроками службы. В некоторых трехфазных ИБП пользователю предлагается фиксированный набор батарей или батарейных шкафов, рассчитанных на различное время работы на автономном режиме. Покупая ИБП других фирм, пользователь может более или менее свободно выбирать батарею своего ИБП (включая ее емкость, тип и количество элементов). В некоторых случаях батарея устанавливается в корпус ИБП, но в большинстве случаев, особенно при большой мощности ИБП, она устанавливается в отдельном корпусе, а иногда и в отдельном помещении.

    Инвертор

    Как и в ИБП малой мощности, в трехфазных ИБП применяются транзисторные инверторы, управляемые схемой широтно-импульсной модуляции (ШИМ). Некоторые ИБП с трехфазным выходом имеют два инвертора. Их выходы подключены к трансформаторам, сдвигающим фазу выходных напряжений. Даже в случае применения относительно низкочастоной ШИМ, такая схема совместно с применением фильтра переменного тока, построенного на трансформаторе и конденсаторах, позволяет обеспечить очень малый коэффициент гармонических искажений на выходе ИБП (до 3% на линейной нагрузке). Применение двух инверторов увеличивает надежность ИБП, поскольку даже при выходе из строя силовых транзисторов одного из инверторов, другой инвертор обеспечит работу нагрузки, пусть даже при большем коэффициенте гармонических искажений.

    В последнее время, по мере развития технологии силовых полупроводников, начали применяться более высокочастотные транзисторы. Частота ШИМ может составлять 4 и более кГц. Это позволяет уменьшить гармонические искажения выходного напряжения и отказаться от применения второго инвертора. В хороших ИБП существуют несколько уровней защиты инвертора от перегрузки. При небольших перегрузках инвертор может уменьшать выходное напряжение (пытаясь снизить ток, проходящий через силовые полупроводники). Если перегрузка очень велика (например нагрузка составляет более 125% номинальной), ИБП начинает отсчет времени работы в условиях перегрузки и через некоторое время (зависящее от степени перегрузки – от долей секунды до минут) переключается на работу через статический байпас. В случае большой перегрузки или короткого замыкания, переключение на статический байпас происходит сразу.

    Некоторые современные высококлассные ИБП (с высокочакстотной ШИМ) имеют две цепи регулирования выходного напряжения. Первая из них осуществляет регулирование среднеквадратичного (действующего) значения напряжения, независимо для каждой из фаз. Вторая цепь измеряет мгновенные значения выходного напряжения и сравнивает их с хранящейся в памяти блока управления ИБП идеальной синусоидой. Если мгновенное значение напряжения отклонилось от соотвествующего "идеального" значения, то вырабатывается корректирующий импульс и форма синусоиды выходного напряжения исправляется. Наличие второй цепи обратной связи позволяет обеспечить малые искажения формы выходного напряжения даже при нелинейных нагрузках.

    Статический байпас

    Блок статического байпаса состоит из двух трехфазных (при трехфазном выходе) тиристорных переключателей: статического выключателя инвертора (на схеме – СВИ) и статического выключателя байпаса (СВБ). При нормальной работе ИБП (от сети или от батареи) статический выключатель инвертора замкнут, а статический выключатель байпаса разомкнут. Во время значительных перегрузок или выхода из строя инвертора замкнут статический переключатель байпаса, переключатель инвертора разомкнут. В момент переключения оба статических переключателя на очень короткое время замкнуты. Это позволяет обеспечить безразрывное питание нагрузки.

    Каждая модель ИБП имеет свою логику управления и, соответственно, свой набор условий срабатывания статических переключателей. При покупке ИБП бывает полезно узнать эту логику и понять, насколько она соответствует вашей технологии работы. В частности хорошие ИБП сконструированы так, чтобы даже если байпас недоступен (т.е. отсутствует синхронизация инвертора и байпаса – см. главу 6) в любом случае постараться обеспечить электроснабжение нагрузки, пусть даже за счет уменьшения напряжения на выходе инвертора.

    Статический байпас ИБП с трехфазным входом и однофазным выходом имеет особенность. Нагрузка, распределенная на входе ИБП по трем фазным проводам, на выходе имеет только два провода: один фазный и нейтральный. Статический байпас тоже конечно однофазный, и синхронизация напряжения инвертора производится относительно одной из фаз трехфазной сети (любой, по выбору пользователя). Вся цепь, подводящая напряжение к входу статического байпаса должна выдерживать втрое больший ток, чем входной кабель выпрямителя ИБП. В ряде случаев это может вызвать трудности с проводкой.

    Сервисный байпас

    Трехфазные ИБП имеют большую мощность и обычно устанавливаются в местах действительно критичных к электропитанию. Поэтому в случае выхода из строя какого-либо элемента ИБП или необходимости проведения регламентных работ (например замены батареи), в большинстве случае нельзя просто выключить ИБП или поставить на его место другой. Нужно в любой ситуации обеспечить электропитание нагрузки. Для этих ситуаций у всех трехфазных ИБП имеется сервисный байпас. Он представляет собой ручной переключатель (иногда как-то заблокированный, чтобы его нельзя было включить по ошибке), позволяющий переключить нагрузку на питание непосредственно от сети. У большинства ИБП для переключения на сервисный байпас существует специальная процедура (определенная последовательность действий), которая позволяет обеспечит непрерывность питания при переключениях.

    Режимы работы трехфазного ИБП с двойным преобразованием

    Трехфазный ИБП может работать на четырех режимах работы.

    • При нормальной работе нагрузка питается по цепи выпрямитель-инвертор стабилизированным напряжением, отфильтрованным от импульсов и шумов за счет двойного преобразования энергии.
    • Работа от батареи. На это режим ИБП переходит в случае, если напряжение на выходе ИБП становится таким маленьким, что выпрямитель оказывается не в состоянии питать инвертор требуемым током, или выпрямитель не может питать инвертор по другой причине, например из-за поломки. Продолжительность работы ИБП от батареи зависит от емкости и заряда батареи, а также от нагрузки ИБП.
    • Когда какой-нибудь инвертор выходит из строя или испытывает перегрузку, ИБП безразрывно переходит на режим работы через статический байпас. Нагрузка питается просто от сети через вход статического байпаса, который может совпадать или не совпадать со входом выпрямителя ИБП.
    • Если требуется обслуживание ИБП, например для замены батареи, то ИБП переключают на сервисный байпас. Нагрузка питается от сети, а все цепи ИБП, кроме входного выключателя сервисного байпаса и выходных выключателей отделены от сети и от нагрузки. Режим работы на сервисном байпасе не является обязательным для небольших однофазных ИБП с двойным преобразованием. Трехфазный ИБП без сервисного байпаса немыслим.

    Надежность

    Трехфазные ИБП обычно предназначаются для непрерывной круглосуточной работы. Работа нагрузки должна обеспечиваться практически при любых сбоях питания. Поэтому к надежности трехфазных ИБП предъявляются очень высокие требования. Вот некоторые приемы, с помощью которых производители трехфазных ИБП могут увеличивать надежность своей продукции. Применение разделительных трансформаторов на входе и/или выходе ИБП увеличивает устойчивость ИБП к скачкам напряжения и нагрузки. Входной дроссель не только обеспечивает "мягкий запуск", но и защищает ИБП (и, в конечном счете, нагрузку) от очень быстрых изменений (скачков) напряжения.

    Обычно фирма выпускает целый ряд ИБП разной мощности. В двух или трех "соседних по мощности" ИБП этого ряда часто используются одни и те же полупроводники. Если это так, то менее мощный из этих двух или трех ИБП имеет запас по предельному току, и поэтому несколько более надежен. Некоторые трехфазные ИБП имеют повышенную надежность за счет резервирования каких-либо своих цепей. Так, например, могут резервироваться: схема управления (микропроцессор + платы "жесткой логики"), цепи управления силовыми полупроводниками и сами силовые полупроводники. Батарея, как часть ИБП тоже вносит свой вклад в надежность прибора. Если у ИБП имеется возможность гибкого выбора батареи, то можно выбрать более надежный вариант (батарея более известного производителя, с меньшим числом соединений).

    Преобразователи частоты

    Частота напряжения переменного тока в электрических сетях разных стран не обязательно одинакова. В большинстве стран (в том числе и в России) распространена частота 50 Гц. В некоторых странах (например в США) частота переменного напряжения равна 60 Гц. Если вы купили оборудование, рассчитанное на работу в американской электрической сети (110 В, 60 Гц), то вы должны каким-то образом приспособить к нему нашу электрическую сеть. Преобразование напряжения не является проблемой, для этого есть трансформаторы. Если оборудование оснащено импульсным блоком питания, то оно не чувствительно к частоте и его можно использовать в сети с частотой 50 Гц. Если же в состав оборудования входят синхронные электродвигатели или иное чувствительное к частоте оборудование, вам нужен преобразователь частоты. ИБП с двойным преобразованием энергии представляет собой почти готовый преобразователь частоты.

    В самом деле, ведь выпрямитель этого ИБП может в принципе работать на одной частоте, а инвертор выдавать на своем выходе другую. Есть только одно принципиальное ограничение: невозможность синхронизации инвертора с линией статического байпаса из-за разных частот на входе и выходе. Это делает преобразователь частоты несколько менее надежным, чем сам по себе ИБП с двойным преобразованием. Другая особенность: преобразователь частоты должен иметь мощность, соответствующую максимальному возможному току нагрузки, включая все стартовые и аварийные забросы, ведь у преобразователя частоты нет статического байпаса, на который система могла бы переключиться при перегрузке.

    Для изготовления преобразователя частоты из трехфазного ИБП нужно разорвать цепь синхронизации, убрать статический байпас (или, вернее, не заказывать его при поставке) и настроить инвертор ИБП на работу на частоте 60 Гц. Для большинства трехфазных ИБП это не представляет проблемы, и преобразователь частоты может быть заказан просто при поставке.

    ИБП с горячим резервированием

    В некоторых случаях надежности даже самых лучших ИБП недостаточно. Так бывает, когда сбои питания просто недопустимы из-за необратимых последствий или очень больших потерь. Обычно в таких случаях в технике применяют дублирование или многократное резервирование блоков, от которых зависит надежность системы. Есть такая возможность и для трехфазных источников бесперебойного питания. Даже если в конструкцию ИБП стандартно не заложено резервирование узлов, большинство трехфазных ИБП допускают резервирование на более высоком уровне. Резервируется целиком ИБП. Простейшим случаем резервирования ИБП является использование двух обычных серийных ИБП в схеме, в которой один ИБП подключен к входу байпаса другого ИБП.

    4930

    Рис. 19а. Последовательное соединение двух трехфазных ИБП

    На рисунке 19а приведена схема двух последовательно соединенным трехфазных ИБП. Для упрощения на рисунке приведена, так называемая, однолинейная схема, на которой трем проводам трехфазной системы переменного тока соответствует одна линия. Однолинейные схемы часто применяются в случаях, когда особенности трехфазной сети не накладывают отпечаток на свойства рассматриваемого прибора. Оба ИБП постоянно работают. Основной ИБП питает нагрузку, а вспомогательный ИБП работает на холостом ходу. В случае выхода из строя основного ИБП, нагрузка питается не от статического байпаса, как в обычном ИБП, а от вспомогательного ИБП. Только при выходе из строя второго ИБП, нагрузка переключается на работу от статического байпаса.

    Система из двух последовательно соединенных ИБП может работать на шести основных режимах.

    А. Нормальная работа. Выпрямители 1 и 2 питают инверторы 1 и 2 и, при необходимости заряжают батареи 1 и 2. Инвертор 1 подключен к нагрузке (статический выключатель инвертора 1 замкнут) и питает ее стабилизированным и защищенным от сбоев напряжением. Инвертор 2 работает на холостом ходу и готов "подхватить" нагрузку, если инвертор 1 выйдет из строя. Оба статических выключателя байпаса разомкнуты.

    Для обычного ИБП с двойным преобразованием на режиме работы от сети допустим (при сохранении гарантированного питания) только один сбой в системе. Этим сбоем может быть либо выход из строя элемента ИБП (например инвертора) или сбой электрической сети.

    Для двух последовательно соединенных ИБП с на этом режиме работы допустимы два сбоя в системе: выход из строя какого-либо элемента основного ИБП и сбой электрической сети. Даже при последовательном или одновременном возникновении двух сбоев питание нагрузки будет продолжаться от источника гарантированного питания.

    Б. Работа от батареи 1. Выпрямитель 1 не может питать инвертор и батарею. Чаще всего это происходит из-за отключения напряжения в электрической сети, но причиной может быть и выход из строя выпрямителя. Состояние инвертора 2 в этом случае зависит от работы выпрямителя 2. Если выпрямитель 2 работает (например он подключен к другой электрической сети или он исправен, в отличие от выпрямителя 1), то инвертор 2 также может работать, но работать на холостом ходу, т.к. он "не знает", что с первым ИБП системы что-то случилось. После исчерпания заряда батареи 1, инвертор 1 отключится и система постарается найти другой источник электроснабжения нагрузки. Им, вероятно, окажется инвертор2. Тогда система перейдет к другому режиму работы.

    Если в основном ИБП возникает еще одна неисправность, или батарея 1 полностью разряжается, то система переключается на работу от вспомогательного ИБП.

    Таким образом даже при двух сбоях: неисправности основного ИБП и сбое сети нагрузка продолжает питаться от источника гарантированного питания.

    В. Работа от инвертора 2. В этом случае инвертор 1 не работает (из-за выхода из строя или полного разряда батареи1). СВИ1 разомкнут, СВБ1 замкнут, СВИ2 замкнут и инвертор 2 питает нагрузку. Выпрямитель 2, если в сети есть напряжение, а сам выпрямитель исправен, питает инвертор и батарею.

    На этом режиме работы допустим один сбой в системе: сбой электрической сети. При возникновении второго сбоя в системе (выходе из строя какого-либо элемента вспомогательного ИБП) электропитание нагрузки не прерывается, но нагрузка питается уже не от источника гарантированного питания, а через статический байпас, т.е. попросту от сети.

    Г. Работа от батареи 2. Наиболее часто такая ситуация может возникнуть после отключения напряжения в сети и полного разряда батареи 1. Можно придумать и более экзотическую последовательность событий. Но в любом случае, инвертор 2 питает нагругку, питаясь, в свою очередь, от батареи. Инвертор 1 в этом случае отключен. Выпрямитель 1, скорее всего, тоже не работает (хотя он может работать, если он исправен и в сети есть напряжение).

    После разряда батареи 2 система переключится на работу от статического байпаса (если в сети есть нормальное напряжение) или обесточит нагрузку.

    Д. Работа через статический байпас. В случае выхода из строя обоих инверторов, статические переключатели СВИ1 и СВИ2 размыкаются, а статические переключатели СВБ1 и СВБ2 замыкаются. Нагрузка начинает питаться от электрической сети.

    Переход системы к работе через статический байпас происходит при перегрузке системы, полном разряде всех батарей или в случае выхода из строя двух инверторов.

    На этом режиме работы выпрямители, если они исправны, подзаряжают батареи. Инверторы не работают. Нагрузка питается через статический байпас.

    Переключение системы на работу через статический байпас происходит без прерывания питания нагрузки: при необходимости переключения сначала замыкается тиристорный переключатель статического байпаса, и только затем размыкается тиристорный переключатель на выходе того инвертора, от которого нагрузка питалась перед переключением.

    Е. Ручной (сервисный) байпас. Если ИБП вышел из строя, а ответственную нагрузку нельзя обесточить, то оба ИБП системы с соблюдением специальной процедуры (которая обеспечивает безразрыное переключение) переключают на ручной байпас. после этого можно производить ремонт ИБП.

    Преимуществом рассмотренной системы с последовательным соединением двух ИБП является простота. Не нужны никакие дополнительные элементы, каждый из ИБП работает в своем штатном режиме. С точки зрения надежности, эта схема совсем не плоха:- в ней нет никакой лишней, (связанной с резервированием) электроники, соответственно и меньше узлов, которые могут выйти из строя.

    Однако у такого соединения ИБП есть и недостатки. Вот некоторые из них.
     

    1. Покупая такую систему, вы покупаете второй байпас (на нашей схеме – он первый – СВБ1), который, вообще говоря, не нужен – ведь все необходимые переключения могут быть произведены и без него.
    2. Весь второй ИБП выполняет только одну функцию – резервирование. Он потребляет электроэнергию, работая на холостом ходу и вообще не делает ничего полезного (разумеется за исключением того времени, когда первый ИБП отказывается питать нагрузку). Некоторые производители предлагают "готовые" системы ИБП с горячим резервированием. Это значит, что вы покупаете систему, специально (еще на заводе) испытанную в режиме с горячим резервированием. Схема такой системы приведена на рис. 19б.

    4931

    Рис.19б. Трехфазный ИБП с горячим резервированием

    Принципиальных отличий от схемы с последовательным соединением ИБП немного.

    1. У второго ИБП отсутствует байпас.
    2. Для синхронизации между инвертором 2 и байпасом появляется специальный информационный кабель между ИБП (на рисунке не показан). Поэтому такой ИБП с горячим резервированием может работать на тех же шести режимах работы, что и система с последовательным подключением двух ИБП. Преимущество "готового" ИБП с резервированием, пожалуй только одно – он испытан на заводе-производителе в той же комплектации, в которой будет эксплуатироваться.

    Для расмотренных схем с резервированием иногда применяют одно важное упрощение системы. Ведь можно отказаться от резервирования аккумуляторной батареи, сохранив резервирование всей силовой электроники. В этом случае оба ИБП будут работать от одной батареи (оба выпрямителя будут ее заряжать, а оба инвертора питаться от нее в случае сбоя электрической сети). Применение схемы с общей бетареей позволяет сэкономить значительную сумму – стоимость батареи.

    Недостатков у схемы с общей батареей много:

    1. Не все ИБП могут работать с общей батареей.
    2. Батарея, как и другие элементы ИБП обладает конечной надежностью. Выход из строя одного аккумулятора или потеря контакта в одном соединении могут сделать всю системы ИБП с горячим резервирование бесполезной.
    3. В случае выхода из строя одного выпрямителя, общая батарея может быть выведена из строя. Этот последний недостаток, на мой взгляд, является решающим для общей рекомендации – не применять схемы с общей батареей.


    Параллельная работа нескольких ИБП

    Как вы могли заметить, в случае горячего резервирования, ИБП резервируется не целиком. Байпас остается общим для обоих ИБП. Существует другая возможность резервирования на уровне ИБП – параллельная работа нескольких ИБП. Входы и выходы нескольких ИБП подключаются к общим входным и выходным шинам. Каждый ИБП сохраняет все свои элементы (иногда кроме сервисного байпаса). Поэтому выход из строя статического байпаса для такой системы просто мелкая неприятность.

    На рисунке 20 приведена схема параллельной работы нескольких ИБП.

    4932

    Рис.20. Параллельная работа ИБП

    На рисунке приведена схема параллельной системы с раздельными сервисными байпасами. Схема система с общим байпасом вполне ясна и без чертежа. Ее особенностью является то, что для переключения системы в целом на сервисный байпас нужно управлять одним переключателем вместо нескольких. На рисунке предполагается, что между ИБП 1 и ИБП N Могут располагаться другие ИБП. Разные производителю (и для разных моделей) устанавливают свои максимальные количества параллеьно работающих ИБП. Насколько мне известно, эта величина изменяется от 2 до 8. Все ИБП параллельной системы работают на общую нагрузку. Суммарная мощность параллельной системы равна произведению мощности одного ИБП на количество ИБП в системе. Таким образом параллельная работа нескольких ИБП может применяться (и в основном применяется) не столько для увеличения надежности системы бесперебойного питания, но для увеличения ее мощности.

    Рассмотрим режимы работы параллельной системы

    Нормальная работа (работа от сети). Надежность

    Когда в сети есть напряжение, достаточное для нормальной работы, выпрямители всех ИБП преобразуют переменное напряжение сети в постоянное, заряжая батареи и питая инверторы.

    Инверторы, в свою очередь, преобразуют постоянное напряжение в переменное и питают нагрузку. Специальная управляющая электроника параллельной системы следит за равномерным распределением нагрузки между ИБП. В некоторых ИБП распределение нагрузки между ИБП производится без использования специальной параллельной электроники. Такие приборы выпускаются "готовыми к параллельной работе", и для использования их в параллельной системе достаточно установить плату синхронизации. Есть и ИБП, работающие параллельго без специальной электроники. В таком случае количество параллельно работающих ИБП – не более двух. В рассматриваемом режиме работы в системе допустимо несколько сбоев. Их количество зависит от числа ИБП в системе и действующей нагрузки.

    Пусть в системе 3 ИБП мощностью по 100 кВА, а нагрузка равна 90 кВА. При таком соотношении числа ИБП и их мощностей в системе допустимы следующие сбои.

    Сбой питания (исчезновение напряжения в сети)

    Выход из строя любого из инверторов, скажем для определенности, инвертора 1. Нагрузка распределяется между двумя другими ИБП. Если в сети есть напряжение, все выпрямители системы работают.

    Выход из строя инвертора 2. Нагрузка питается от инвертора 3, поскольку мощность, потребляемая нагрузкой меньше мощности одного ИБП. Если в сети есть напряжение, все выпрямители системы продолжают работать.

    Выход из строя инвертора 3. Система переключается на работу через статический байпас. Нагрузка питается напрямую от сети. При наличии в сети нормального напряжения, все выпрямители работают и продолжают заряжать батареи. При любом последующем сбое (поломке статического байпаса или сбое сети) питание нагрузки прекращается. Для того, чтобы параллельная система допускала большое число сбоев, система должна быть сильно недогружена и должна включать большое число ИБП. Например, если нагрузка в приведенном выше примере будет составлять 250 кВА, то система допускает только один сбой: сбой сети или поломку инвертора. В отношении количества допустимых сбоев такая система эквивалентна одиночному ИБП. Это, кстати, не значит, что надежность такой параллельной системы будет такая же, как у одиночного ИБП. Она будет ниже, поскольку параллельная система намного сложнее одиночного ИБП и (при почти предельной нагрузке) не имеет дополнительного резервирования, компенсирующего эту сложность.

    Вопрос надежности параллельной системы ИБП не может быть решен однозначно. Надежность зависит от большого числа параметров: количества ИБП в системе (причем увеличение количества ИБП до бесконечности снижает надежность – система становится слишком сложной и сложно управляемой – впрочем максимальное количество параллельно работающих модулей для известных мне ИБП не превышает 8), нагрузки системы (т.е. соотношения номинальной суммарной мощности системы и действующей нагрузки), примененной схемы параллельной работы (т.е. есть ли в системе специальная электроника для обеспечения распределения нагрузки по ИБП), технологии работы предприятия. Таким образом, если единственной целью является увеличение надежности системы, то следует серьезно рассмотреть возможность использование ИБП с горячим резервированием – его надежность не зависит от обстоятельств и в силу относительной простоты схемы практически всегда выше надежности параллельной системы.

    Недогруженная система из нескольких параллельно работающих ИБП, которая способна реализвать описанную выше логику управления, часто также называется параллельной системой с резервированием.

    Работа с частичной нагрузкой

    Если нагрузка параллельной системы такова, что с ней может справиться меньшее, чем есть в системе количество ИБП, то инверторы "лишних" ИБП могут быть отключены. В некоторых ИБП такая логика управления подразумевается по умолчанию, а другие модели вообще лишены возможности работы в таком режиме. Инверторы, оставшиеся включенными, питают нагрузку. Коэффициент полезного действия системы при этом несколько возрастает. Обычно в этом режиме работы предусматривается некоторая избыточность, т.е. количестов работающих инверторов больше, чем необходимо для питания нагрузки. Тем самым обеспечивается резервирование. Все выпрямители системы продолжают работать, включая выпрямители тех ИБП, инверторы которых отключены.

    Работа от батареи

    В случае исчезновения напряжения в электрической сети, параллельная система переходит на работу от батареи. Все выпрямители системы не работают, инверторы питают нагрузку, получая энергию от батареи. В этом режиме работы (естественно) отсутствует напряжение в электрической сети, которое при нормальной работе было для ИБП не только источником энергии, но и источником сигнала синхронизации выходного напряжения. Поэтому функцию синхронизации берет на себя специальная параллельная электроника или выходная цепь ИБП, специально ориентированная на поддержание выходной частоты и фазы в соответствии с частотой и фазой выходного напряжения параллельно работающего ИБП.

    Выход из строя выпрямителя

    Это режим, при котором вышли из строя один или несколько выпрямителей. ИБП, выпрямители которых вышли из строя, продолжают питать нагрузку, расходуя заряд своей батареи. Они выдает сигнал "неисправность выпрямителя". Остальные ИБП продолжают работать нормально. После того, как заряд разряжающихся батарей будет полностью исчерпан, все зависит от соотношения мощности нагрузки и суммарной мощности ИБП с исправными выпрямителями. Если нагрузка не превышает перегрузочной способности этих ИБП, то питание нагрузки продолжится (если у системы остался значительный запас мощности, то в этом режиме работы допустимо еще несколько сбоев системы). В случае, если нагрузка ИБП превышает перегрузочную способность оставшихся ИБП, то система переходит к режиму работы через статический байпас.

    Выход из строя инвертора

    Если оставшиеся в работоспособном состоянии инверторы могут питать нагрузку, то нагрузка продолжает работать, питаясь от них. Если мощности работоспособных инверторов недостаточно, система переходит в режим работы от статического байпаса. Выпрямители всех ИБП могут заряжать батареи, или ИБП с неисправными инверторами могут быть полностью отключены для выполнения ремонта.

    Работа от статического байпаса

    Если суммарной мощности всех исправных инверторов параллельной системы не достаточно для поддержания работы нагрузки, система переходит к работе через статический байпас. Статические переключатели всех инверторов разомкнуты (исправные инверторы могут продолжать работать). Если нагрузка уменьшается, например в результате отключения части оборудования, параллельная система автоматически переключается на нормальный режим работы.

    В случае одиночного ИБП с двойным преобразованием работа через статический байпас является практически последней возможностью поддержания работы нагрузки. В самом деле, ведь достаточно выхода из строя статического переключателя, и нагрузка будет обесточена. При работе параллельной системы через статический байпас допустимо некоторое количество сбоев системы. Статический байпас способен выдерживать намного больший ток, чем инвертор. Поэтому даже в случае выхода из строя одного или нескольких статических переключателей, нагрузка возможно не будет обесточена, если суммарный допустимый ток оставшихся работоспособными статических переключателей окажется достаточен для работы. Конкретное количество допустимых сбоев системы в этом режиме работы зависит от числа ИБП в системе, допустимого тока статического переключателя и величины нагрузки.

    Сервисный байпас

    Если нужно провести с параллельной системой ремонтные или регламентные работы, то система может быть отключена от нагрузки с помощью ручного переключателя сервисного байпаса. Нагрузка питается от сети, все элементы параллельной системы ИБП, кроме батарей, обесточены. Как и в случае системы с горячим резервированием, возможен вариант одного общего внешнего сервисного байпаса или нескольких сервисных байпасов, встроенных в отдельные ИБП. В последнем случае при использовании сервисного байпаса нужно иметь в виду соотношение номинального тока сервисного байпаса и действующей мощности нагрузки. Другими словами, нужно включить столько сервисных байпасов, чтобы нагрузка не превышала их суммарный номинальных ток.
    [ http://www.ask-r.ru/info/library/ups_without_secret_7.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > трехфазный источник бесперебойного питания (ИБП)

  • 19 бактерии

    bacteria, ед. ч. bacterium

    Группа ( тип) микроскопических, преимущественно одноклеточных организмов, обладающих клеточной стенкой, но не имеющих оформленного ядра ( роль его выполняет молекула ДНК), размножающихся делением. Бактерии широко распространены в природе (вызывают гниение, брожение и т. д.); некоторые бактерии используются в сельском хозяйстве (см. также азотобактер), для микробиологического синтеза и др.; болезнетворные ( патогенные) бактерии – возбудители многих болезней человека, животных и растений (см. также палочки и кокки).

    Бактерии, которые могут синтезировать органические вещества из неорганичных в результате фотосинтеза или хемосинтеза (см. также автотрофы).

    Бактерии, обладающие способностью усваивать молекулярный азот воздуха и переводить его в доступные для растений формы. Играют важную роль в круговороте азота в природе (см. также азотфиксация).

    Бактерии, использующие кислород в минимальных количествах для своей жизнедеятельности (см. также анаэробы).

    Бактерии рода Clostridium (например, Clostridium acetobutylicum), у которых основными продуктами сбраживания углеводов являются ацетон и бутанол.

    Бактерии, жизнеспособные в очень кислой среде; получают энергию за счёт окисления железа, серы и других веществ; используются для выщелачивания бедных руд с целью получения меди, цинка, никеля, молибдена, урана и в молочной промышленности.

    Бактерии, которые требуют кислорода для основного ( элементарного) выживания, роста и процесса воспроизводства. Аэробные бактерии очень распространенны в природе и играют главную роль в самых разных биологических процессах (см. также аэробы).

    водородные бактерии — hydrogenotrophic bacteria, hydrogen-oxidizing bacteria

    Большая группа бактерий, способных к использованию ( окислению) молекулярного водорода. Различают анаэробные водородные бактерии, у которых окисление H2 сопровождается восстановлением сульфата до сульфита или CO2 до метана (например, Desulfovibrio vulgaris, Methanobacterium), и аэробные водородные бактерии, которые используют кислород как конечный акцептор электронов и способны к автотрофной фиксации CO2 (например, Alcaligenes eutrophus, Pseudomonas facilis и другие).

    Бактерии, обладающие способностью при росте на некоторых субстратах образовывать газ (H2, CO2 и другие). Это свойство используется как диагностический признак.

    Бактерии, живущие в средах с высоким содержанием солей; встречаются на кристаллах соли в прибрежной полосе, на солёной рыбе, на засоленных шкурах животных, на рассольных сырах, в капустных и огуречных рассолах (см. также галобактерии).

    Бактерии, использующие в качестве источника энергии и углерода углеродсодержащие ( органические) соединения (см. также гетеротрофы).

    Бактерии, которые при окрашивании по Граму могут окрашиваться как в тёмно-синий, так и в розово-красный цвет.

    Бактерии, которые при использовании окраски по Граму обесцвечиваются при промывке. После обесцвечивания они обычно окрашиваются дополнительным красителем ( фуксином) в розовый цвет. Многие грамотрицательные бактерии патогенны.

    Бактерии, которые окрашиваются по методу Грама основным красителем в тёмно-фиолетовый цвет и не обесцвечиваются при промывке.

    Бактерии, способные восстанавливать нитрат через нитрит до газообразной закиси азота (N2O) и азота (N2) (например, Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas stutzeri и другие). В отсутствие кислорода нитрат служит конечным акцептором водорода.

    Группа бактерий, для которых характерно наличие хлоросом – органелл, содержащих пигмент бактериохлорофилл.

    Бактерии, имеющие форму спирально извитых или дугообразных изогнутых палочек; обитают в водоёмах и кишечнике животных.

    клубеньковые бактерии — nodule bacteria, root nodule bacteria

    Бактерии, вызывающие образование клубеньков у бобовых растений; относятся к родам Rhizobium, Bradyrhizobium, Sinorhizobium, Azorhizobium (см. также бактероиды).

    Группа бактерий, типичными представителями которой являются роды Escherichia, Salmonella и Shigella; обитают в кишечнике животных и человека.

    Бактерии группы кишечной палочки; относятся к классу граммотрицательных бактерий, имеют форму палочек, в основном живут и размножаются в нижнем отделе пищеварительного тракта человека и большинства теплокровных животных.

    Бактерии, инфицированные умеренным фагом и включившие профаг в ДНК.

    люминесцирующие бактерии — luminescent bacteria, luminous bacteria

    Бактерии, культуры которых в присутствии кислорода светятся белым или голубоватым светом; принадлежат к различным систематическим группам. Распространены в поверхностном слое воды морей. Некоторые виды обитают в органах свечения головоногих моллюсков и рыб.

    Гетероферментативные молочнокислые бактерии рода Leuconostoc. Образуют зооглеи – скопления клеток, заключенные в одну общую капсулу. При этом слизистые экзополимеры выделяются бактериальной клеткой в большом количестве, частично отделяются от неё и образуют рыхлый слизистый слой (см. также слизь).

    Бактерии рода Clostridium (Clostridium butyricum, Clostridium pasteurianum, Clostridium pectinovorum), у которых основными продуктами сбраживания являются масляная и уксусная кислоты.

    Бактерии, для которых температурный оптимум для роста лежит в пределах от 20°C до 42°C; к мезофильным бактериям относятся большинство почвенных и водных бактерий.

    метанобразующие бактерии — methanogenic bacteria, methanogens

    Бактерии, способные получать энергию за счёт восстановления CO2 до метана; морфологически разнообразная группа, строгие анаэробы (см. также метаногены).

    метаноокисляющие бактерии — methane oxidizing bacteria, methane oxidizers

    Бактерии, специализирующиеся на использовании C1-соединений. Относятся к метилотрофным организмам.

    Бактерии, окисляющие метан, а также способные использовать метанол, метилированные амины, диметиловый эфир, формальдегид и формиат. Включают роды Methylomonas, Methylococcus, Methylosinus.

    Тривиальное название группы бактерий, образующих молочную кислоту при сбраживании углеводов. К молочнокислым бактериям относятся роды Lactobacillus и Streptococcus.

    бактерии, не образующие газа non-gas-producing bacteria

    бактерии, не способные адсорбировать фаг nonreceptive bacteria

    Бактерии, безопасные для человека, животных и растений.

    Группа бактерий с преимущественно фотогетеротрофным метаболизмом. Бактерии чувствительны к H2S, их рост подавляется низкими концентрациями сульфида.

    нитрифицирующие бактерии — nitrifying bacteria, nitrifiers

    Бактерии, получающие энергию при окислении аммиака в нитрит или нитрита в нитрат. Наиболее известные виды – Nitrosomonas europaea и Nitrobacter winogradskyi, а также виды рода Nitrosolobus (см. также нитрификация).

    Бактерии, растущие в виде длинных нитей, состоящих из цепочки клеток ( раньше их называли охровыми бактериями). Нитчатые бактерии широко распространены в водах, богатых железом, канавах, дренажных трубах и болотах. Наиболее известна Sphaerotilus natans.

    Нитчатые бактерии рода Leptothrix. Естественные места их обитания бедны пригодными для них органическими веществами, но богаты железом, поэтому органические вещества там часто образуют комплексы с железом. Из-за этого чехлы этих бактерий пронизаны и окружены частицами окиси железа.

    палочковидные бактерии — rodlike bacteria, rod-shaped bacteria, bacilli

    Самая распространенная форма бактерий. Палочковидные бактерии различаются по форме, величине в длину и ширину, по форме концов клетки, а также по взаимному расположению. Палочки могут быть правильной и неправильной формы, в том числе ветвящиеся. Общее число палочковидных бактерий значительно больше, чем кокковидных (см. также бациллы).

    Бактерии, вызывающие болезни человека, животных и растений.

    Группа бактерий (например, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Serratia marcescens и другие) с яркой окраской, обусловленной пигментацией самой клетки. Среди пигментов могут встречаться представители различных классов веществ: каротиноиды, феназиновые красители, пирролы, азахиноны, антоцианы и другие.

    Бактерии родов Propionibacterium, Veillonella, Clostridium, Selemonas, Micromonospora и другие, выделяющие пропионовую и уксусную кислоты как основные продукты брожения. Обитают в рубце и кишечнике жвачных животных. В промышленности используются, например, при производстве швейцарского сыра.

    Бактерии, обладающие специальными выростами – простеками. Большинство простековых бактерий обнаружено среди олиготрофных микроорганизмов, обитающих в воде. У фотосинтезирующих зелёных бактерий рода Prosthecochloris в простеках располагаются хлоросомы, содержащие бактериохлорофилл.

    Холодолюбивые бактерии, растущие с максимальной скоростью при температурах ниже 2°C. Психрофильные бактерии составляют большую группу сапрофитических микроорганизмов – обитателей почвы, морей, пресных водоёмов, сточных вод. К ним относятся некоторые железобактерии, псевдомонады, светящиеся бактерии, бациллы и другие. Некоторые психрофильные бактерии могут вызывать порчу продуктов питания, хранящихся при низкой температуре (см. также психрофильные организмы).

    Общим для всех пурпурных бактерий Rhodospirillales является способность использовать в качестве основного источника энергии свет, но многие растут и в темноте за счёт энергии, образуемой при окислительном фосфорилировании. Их фотосинтетический аппарат находится на внутренних мембранах – тилакоидах. По способности использовать в качестве донора электронов элементарную серу в группе пурпурных бактерий выделяют два семейства: пурпурные серные бактерии и пурпурные несерные бактерии.

    Группа бактерий (например, Chromatium, Thiocapsa, Ectothiorhodospira и Thiospirillum jenense), входящая в состав пурпурных бактерий. Отличительной особенностью этой группы является внутриклеточное отложение серы, образующейся при окислении H2S.

    Бактерии, которые могут расти на простых средах, содержащих одно вещество в качестве источника углерода и энергии, а также несколько неорганических солей для обеспечения потребности в других элементах. Для многих бактерий предпочтительным источником углерода служит глюкоза.

    Бактерии, превращающие органические вещества в неорганические, участвуя тем самым в круговороте веществ в природе; к сапрофитным относятся большинство бактерий.

    Хемоорганотрофные бактерии ( роды Photobacterium и Beneckea), в основном обитающие в морях; свечение этих бактерий наблюдается только в присутствии кислорода.

    Бактерии, временно накапливающие или выделяющие серу. Для аэробных серных бактерий (роды Beggiatoa, Thiothrix, Achromatium, Thiovulum) сера служит источником энергии, для анаэробных фототрофных серных бактерий ( род Chromatium) – донором электронов. Включения серы у некоторых бактерий представляют собой продукты обеззараживания сероводорода, часто присутствующего в местах обитания этих организмов.

    Бактерии, образующие капсулу ( более или менее толстые слои сильно обводнённого материала), которая отделяется в окружающую среду в виде слизи. Известный пример слизеобразующей бактерии – Leuconostoc mesenteroides, так называемая бактерия лягушачьей икры.

    Бактерии, обладающие способностью образовывать терморезистентные споры. Аэробные и факультативно анаэробные спорообразующие бактерии сведены в роды Sporolactobacillus, Bacillus и Sporosarcina, а анаэробные – роды Clostridium и Desulfotomaculum.

    Некоторые широко распространённые бактерии, «сидящие» на стебельках из слизи. К стебельковым бактериям, образующим специальные выросты или простеки, относятся Caulobacter и другие.

    Бактерии, встречающиеся главным образом в сероводородном иле, где органические вещества подвергаются анаэробному разложению. Эти бактерии приспособлены к использованию продуктов неполного разложения углеводов. Имеют большое экономическое значение, так как с их помощью можно, например, получать сероводород, а следовательно, и серу путём восстановления сульфатов морской воды за счёт органических отходов. К важнейшим и наиболее распространённым сульфатредуцирующим бактериям относятся Desulfovibrio desulfuricans, Desulfovibrio vulgaris, Desulfotomaculum nigrificans, Desulfotomaculum orientis и другие.

    Теплолюбивые бактерии, хорошо растущие при температурах выше 40°C, для большинства из них верхний предел температуры 70°C (Thermoactinomyces vulgaris, Bacillus stearothermophilus). Некоторые термофильные бактерии способны расти при температурах более 70°C ( отдельные виды Bacillus и Clostridium), более 80°C ( Sulfolobus acidocaldarius) или даже 105°C ( Pyrodictium occultum) (см. также чёрные курильщики).

    уксуснокислые бактерии — acetic-acid bacteria, vinegar bacteria

    Группа бактерий, способных образовывать кислоты путём неполного окисления сахаров или спиртов. Конечными продуктами такого окисления могут быть уксусная, гликолевая, нейлоновая и другие кислоты. Уксусные бактерии делятся на две группы: peroxydans ( типичный представитель Gluconobacter oxydans), т. е. организмы, накапливающие уксусную кислоту в качестве промежуточного продукта, и suboxydans (например, Acetobacter aceti и Acetobacter pasteurianum), у которых уксусная кислота не окисляется дальше. Благодаря своей способности почти в стехиометрических количествах превращать органические соединения в частично окисленные органические продукты, эти бактерии имеют большое промышленное значение, в частности, используются для производства уксуса из продуктов, содержащих спирт.

    Бактерии, способные использовать свет как источник энергии, необходимой для роста. Это свойство присуще нескольким группам бактерий: 1) пурпурным, зёленым и галобактериям ( класс Anoxyphotobacteria), фотосинтез у которых протекает без выделения O2, и 2) цианобактериям ( класс Oxyphotobacteria), выделяющим O2 на свету (см. также фотосинтез).

    Большая группа хемолитотрофных бактерий, у которых CO2 является единственным и главным источником клеточного углерода. Почти все бактерии этого типа ассимилируют углерод CO2 через рибулозо-бисфосфатный цикл. Благодаря своей высокой специализации многие бактерии этой группы занимают монопольное положение в своей экологической нише.

    Бактерии, ассимилирующие органическое вещество в процессе окисления неорганического донора электронов.

    Бактерии, способные использовать неорганические ионы или соединения (ионы аммония, нитрита, сульфида, тиосульфата, сульфита, двухвалентного железа, а также элементарную серу, молекулярный водород и CO) в качестве доноров водорода или электронов, т. е. получать за счёт их окисления энергию для синтетических процессов.

    Бактерии, образующие различные красящие вещества или пигменты, вследствие чего их скопления в природе и на искусственных средах являются окрашенными в различный цвет (см. также хромобактерии).

    целлюлолитические бактерии — cellulose-fermenting bacteria, cellulolytic bacteria

    Бактерии, разлагающие целлюлозу. Целлюлолитические бактерии секретируют, в основном, эндоглюканазы, большинство из которых проявляет низкую активность по отношению к кристаллической целлюлозе; являются важным звеном в круговороте углерода в природе и существенной частью экосистемы (см. также целлюлоза).

    Русско-английский словарь терминов по микробиологии > бактерии

  • 20 встроенная система

    1. containmentsystem
    2. containment system

     

    встроенная система
    Часть оборудования, содержащая воспламеняющееся вещество и являющаяся вероятным внутренним источником утечки этого вещества.
    [ ГОСТ Р МЭК 60050-426-2006]


    Тематики

    EN

    3.4 встроенная система (containment system): Часть электрооборудования внутри помещения или здания, содержащая воспламеняющееся вещество и которая может быть внутренним источником выделения (утечки) этого вещества.

    Примечание - Встроенная система может распространяться за пределы помещения или здания.

    Источник: ГОСТ Р МЭК 60079-13-2010: Взрывоопасные среды. Часть 13. Защита оборудования помещениями под избыточным давлением «p» оригинал документа

    3.2 встроенная система (containmentsystem): Часть электрооборудования, содержащая воспламеняющееся вещество и которая может быть внутренним источником выделения (утечки) этого вещества.

    Источник: ГОСТ Р МЭК 60079-2-2009: Взрывоопасные среды. Часть 2. Оборудование с защитой вида заполнение или продувка оболочки под избыточным давлением "р" оригинал документа

    Русско-английский словарь нормативно-технической терминологии > встроенная система

См. также в других словарях:

  • быть источником — ▲ быть субъектом ↑ от (чего), который, поступать (о чем) см. являться (чем), источник …   Идеографический словарь русского языка

  • быть примером (кому) — ▲ быть источником ↑ подражать пример то, что вызывает подражание (# для подражания. личный #). являть пример [образец] чего. показывать [подавать] пример кому. быть [являться] примером для кого. ставить в пример. законодатель (# мод). задавать… …   Идеографический словарь русского языка

  • Быть или не быть? — Экспрес. О колебаниях в решении важного вопроса. Наши нынешние критики в первую очередь озабочены тем, писатели они или не писатели. На уровне «быть или не быть?» озабочены. А вот написать главу о языке писателя работёнка адская (В. Конецкий.… …   Фразеологический словарь русского литературного языка

  • Атомно-абсорбционная спектроскопия с источником сплошного спектра — Атомно абсорбционные спектрометры (ААС) с источником сплошного спектра  приборы, предназначенные для проведения количественного элементного анализа по атомным спектрам поглощения, основанные, в отличие от традиционных атомно абсорбционных… …   Википедия

  • Те кто должны быть сохранены — Те, кого следует оберегать (англ. Those Who Must Be Kept)  прародители всех вампиров в цикле «Вампирские хроники» Энн Райс, король и королева вампиров. Изначально король Энкил и королева Акаша из Кемета (ныне Египет) около 4000 до нашей эры …   Википедия

  • Те, кто должны быть сохранены — Те, кого следует оберегать (англ. Those Who Must Be Kept)  прародители всех вампиров в цикле «Вампирские хроники» Энн Райс, король и королева вампиров. Изначально король Энкил и королева Акаша из Кемета (ныне Египет) около 4000 до нашей …   Википедия

  • Устройством отключения питания должен быть оснащен — Устройством отключения питания должен быть оснащен: каждый подвод питания к машине (ам). Примечание Подвод питания может быть осуществлен прямым подключением либо через питающую систему. Передающая система может включать провода, шинопроводы,… …   Словарь-справочник терминов нормативно-технической документации

  • Требования к УЗО - Д со вспомогательным источником питания — 7.3 Требования к УЗО Д со вспомогательным источником питания УЗО Д, работа которых зависит от вспомогательного источника питания, должны быть работоспособны при любом значении напряжения источника в пределах от 0,85Usn до 1,1Usn, где Usn… …   Словарь-справочник терминов нормативно-технической документации

  • притягивать — ▲ быть источником ↑ притяжение привлекать быть источником притяжения …   Идеографический словарь русского языка

  • светить — ▲ быть источником ↑ свет светить, ся излучать, испускать свет; быть источником света. гореть (горит лампа). ↓ огонь, засветиться …   Идеографический словарь русского языка

  • болеть (где) — ▲ быть источником ↑ боль болеть быть источником боли. побаливать. наболеть. разболеться. болезненный (# процедура). щипать, ся (перец щиплет язык). ущипнуть. нащипать. есть (дым ест глаза). едкий (# дым костра). кусать, ся (мороз кусается).… …   Идеографический словарь русского языка

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»